If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+12x-39=0
a = 9; b = 12; c = -39;
Δ = b2-4ac
Δ = 122-4·9·(-39)
Δ = 1548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1548}=\sqrt{36*43}=\sqrt{36}*\sqrt{43}=6\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{43}}{2*9}=\frac{-12-6\sqrt{43}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{43}}{2*9}=\frac{-12+6\sqrt{43}}{18} $
| 47-x(12)=29 | | 47-k(12)=29 | | 3(h-6)=2(5+-2h) | | 6-8p-12-15p-3/4=p | | -6-23p-3/4=p | | 7a-18=5a+12 | | 4^(3x-4)=45 | | 4^3x-4=45 | | 2/x=15/30 | | 3.5(-2x+2=2(4.5x-1) | | P(7,r)=42 | | (m+3)-(m-6)m+2=m+2 | | 224=x2+10x+24 | | 5−2(x−3)=15 | | (x+1)/(2)=(21)/(14) | | X+x-3+(x-3)+17=77 | | (m-1)^2=78 | | (m−1)^2=78 | | 5(2y+2)-6(5y-15=20 | | 5(2y+2)-6(5y-15=20y | | 5(2y+2)-6(5y-15=20y= | | 2(4m+6=4(5m-6)m= | | 2(4m+6=4(5m-6)m | | 26*5=x | | 600x-0.42=400x+0.66 | | x^2+0.1212x-0.0018=0 | | A6=4a(5) | | 4(y-1)+6y=36 | | -7(-4x+4)=-7x+7 | | 1x+10x=40 | | Y=7/8x+2.Y=-7/8x | | (4x^2)+0.245x-0.007=0 |